O futuro já aconteceu. E o livre-arbítrio não existe | Clic Noticias

Não é misticismo. É a última fronteira da ciência – e ela diz que o futuro, de certa forma, já está escrito. Entenda.

Existe um lugar mágico, onde o tempo não passa no mesmo ritmo pra todo mundo. Nenhum relógio marca a mesma hora. E o futebol é um caos. Enquanto um torcedor vê o Messi deles partindo para a grande área com a bola dominada, outro já viu o gol acontecer. Para alguns, o jogo ainda nem começou; para outros, já aconteceu há 50 anos. Um nó.
Num mundo desses, o que ainda é futuro para você já estaria gravado na memória de outro. Seu filho pode nem ter nascido, mas para o vizinho da direita ele já tem seis anos. Para o da esquerda, 20, e foi contratado pelo Barcelona.
Se isso já aconteceu para outra pessoa, não tem mais como ser mudado. É o passado dela, que já está escrito. Se o seu futuro fizer parte desse passado alheio, não há o que fazer: esse futuro também está escrito.
Nesse mundo mágico, a liberdade de escolha, a sensação de livre-arbítrio, é absolutamente ilusória. As pessoas têm tanto poder para determinar seu amanhã quanto uma pedra tem para escolher o dela.
Esse mundo, por sinal, foi desvendado em 1905 por um funcionário público alemão, e desde lá vem inspirando algumas das teorias científicas mais radicais da história.
Ah, mais dois detalhes: o nome do tal descobridor é Albert Einstein. O do lugar mágico, em que o destino de todos já está decido, nem precisa dizer: a gente vive nele.
Para explicar tal insanidade, a SUPER conversou com alguns dos maiores físicos da história recente: Roger Penrose, Anton Zeilinger, Gerardus t’ Hooft, David Deutsche, Dieter Zeh. Vamos embarcar com eles neste mundo incompreensível – o nosso mundo.
O sonho de Einstein
Você vive, sim, num mundo mágico. Só não temos esse problema com jogos de futebol e vizinhos que moram no futuro porque as distorções do tempo na realidade que a gente enxerga são infinitesimais. Mas todas as propriedades do mundo mágico lá estão aqui mesmo: no fundo, nenhum relógio marca a mesma hora, ninguém vive o mesmo presente.
Ou, como disse Einstein numa carta de 1955: “A distinção entre passado, presente e futuro é só uma ilusão, ainda que persistente”. Mas por que ilusão? Poucas coisas são mais concretas que a passagem do tempo. A gente nasce sabendo que as horas passam no mesmo ritmo pra mim e pra você, que corremos para o futuro juntos.
Mas Einstein descobriu que não: no mundo de verdade a gente viaja pelo tempo toda hora. Seu próprio corpo é uma máquina do tempo. Bem menos potente que o De Lorean de De Volta para o Futuro, mas é. Einstein explicou que o tempo não é uma coisa etérea, mas um lugar. Uma dimensão por onde a gente caminha sem parar. Tipo: enquanto você está sentado, lendo este texto, os segundos continuam passando, certo? Então é como se você cruzasse o tempo num trem invisível agora mesmo.
Einstein descobriu que a velocidade com que você se move pelo tempo pode ser medida em quilômetros por hora – 1,08 bilhão de km/h
Até aí, nada demais. Agora é que vem a sacada: o alemão estipulou que esse trem anda a uma velocidade que pode ser medida em quilômetros por hora: exatamente 1,08 bilhão de km/h, a velocidade da luz.
E viu algo mais perturbador ainda: tempo e espaço são basicamente a mesma coisa. O casamento dos dois forma uma paisagem invisível: a do espaço-tempo. Então agora mesmo você pode dizer que está correndo à velocidade da luz através desse espaço-tempo. Claro que todo o 1,08 bilhão de km/h está sendo usado para mover só o tempo mesmo. Mas que você está a essa velocidade agora, está.
Mas tem um problema: para Einstein, nada pode atravessar o espaço-tempo mais rápido que a luz. Então se você já corre a 1,08 bilhão de km/h na “metade tempo” dessa paisagem, não tem de onde tirar velocidade para a “metade espaço”.
Mas espera aí. E se você levanta pra pegar um copo d`água? Vai precisar de uns 5 km/h na “metade espaço” para andar até a cozinha, pelo menos. Essa velocidade tem de sair de algum lugar. Mas de onde? Da única fonte disponível: os motores que empurram o tempo.
Então você tira 5 km/h de lá pra andar até a cozinha. E a velocidade com que você atravessa o espaço-tempo fica redistribuída: 10 km/h vão para o espaço e 1,07999… bilhão de km/h para a do tempo. A velocidade do tempo funciona que nem um banco. Ela empresta quilômetros por hora para tudo o que se move. Mas essa agiotagem tem preço: faz seu relógio perder velocidade. O tempo começa a passar mais devagar para você. E é aí que o mundo mágico de Einstein começa a dar as caras.
Olha um exemplo de verdade: sentado na poltrona, você atravessa o tempo a 1,08 bilhão de km/h, já que seu trem está correndo a todo vapor, ok? Isso significa que 30 segundos vão passar em 30 segundos mesmo, sem mistério. Mas aí você arruma um Porsche e resolve sentar o pé na estrada. Chega a 180 km/h, por exemplo. Para Einstein, isso quer dizer que você pegou 180 km/h emprestados lá do banco do tempo.
Então seu relógio fica andando mais lento: um período que durava 30 segundos cravados quando você estava imóvel vai ter passado em exatamente 29,99999999999952 segundos. Enquanto a Porsche acelera você, ela freia o seu relógio. Mas só o seu. Do lado de fora do carro a velocidade do tempo continua igual. E o resultado é insólito: depois de uma hora com o pé embaixo no carro você vai ter envelhecido 0,0000000576 milésimo de segundo a menos do que tudo o que está lá fora. Isso mesmo. Seu relógio “biológico” também andou mais devagar. Tudo envelheceu um pouco mais rápido que você. As pessoas, as pedras, o Sol, a galáxia de Andrômeda… Tudo. E em que “lugar” tudo é mais velho do que hoje? No futuro. Depois de uma hora a 180 km/h, você viaja 0,0000000576 milésimo de segundo para o futuro.
Depois de uma hora a 180 km/h, você viaja 0,0000000576 milésimo de segundo para o futuro.
Mas caramba. Tanta falação pra chegar nessa miséria? Pois é. O problema é que as velocidades que a gente vive no dia-a-dia são pequenas demais. Não dá para perceber esse efeito minúsculo delas sobre a passagem do tempo. Nem astronautas que já experimentaram velocidades de 40 000 km/h conseguiram fazer um rombo marcante no relógio deles. O crédito de 1,08 bilhão de km/h é generoso.
Mas quando a velocidade aumenta muito, o empréstimo começa a fazer diferença no caixa. Se esse Porsche andasse a mais ou menos 1 bilhão de km/h, por exemplo, o seu “banco do tempo” entra à beira da falência. Agora o mundo mágico aparece de vez.
Assim: imagine que alguém esteja num bar de beira de estrada. Chega um ladrão. São 12h15 e o bandido está nervoso, com um revólver apontado para o rosto do cara, pronto pra atirar. Então você passa com o Super Porsche pela rodovia, a 1 bilhão de km/h. Nesse momento, seu relógio também marca 12h15. Então o que você enxerga pela janela quando passa em frente ao bar? O homem sendo ameaçado? Não.
Os 1 bilhão de km/h fizeram o tempo passar mais devagar para você, lembra? Quando o seu relógio marcar 12h15 já vão ser 12h30 lá fora! A velocidade maior fez o seu tempo dar uma bela freada. Só o seu, note bem. O do resto do mundo continuou correndo no ritmo de sempre. Você foi ultrapassado pelo tempo. Em outras palavras: viajou para o futuro.
Então o que você enxerga quando passa em frente ao bar? Um cadáver. Ou o bandido preso… Seja o que for vai ver uma coisa que, para o homem que está com um revólver na fuça, ainda não foi decidida.
Esse é o paradoxo: você e o rapaz ameaçado estão vivendo o mesmo instante. Um momento que os dois chamam de “agora”. Mesmo assim, o que para ele é futuro é uma coisa que já está gravada na sua memória. Faz parte do seu passado.
E dá para ir mais longe. Einstein mostrou que distâncias muito grandes também acabam com a idéia de que exista um “agora” igual para todo mundo.
Para alguém em outra galáxia, por exemplo, o momento em que você lê essas palavras pode ser entendido agora mesmo como um passado distante. “A concepção dele sobre o que existe neste momento no Universo pode incluir coisas que parecem completamente abertas para nós, como o vencedor das eleições presidenciais dos EUA de 2100. Os candidatos ainda nem nasceram, mas na idéia dele sobre o que acontece exatamente agora já vai estar o primeiro presidente americano do século 22”, escreveu o físico Brian Greene, da Universidade Columbia, nos EUA, em seu livro O Tecido do Cosmos. Parece estranho, mas para a ciência o ponto de vista de alguém num carro a 1 bilhão de km/h ou em outra galáxia é tão válido quanto o seu. Se ele é teoricamente possível, não pode ser desprezado.
“A concepção de alguém em outra galáxia sobre o que existe neste momento no resto do Universo pode incluir o vencedor das eleições presidenciais dos EUA de 2100.”
Brian Greene, da Universidade Columbia
E aí vem o ponto crucial. Se dá para dizer que o nosso futuro já aconteceu. Que poder a gente tem para escolher como vai ser o dia de amanhã? Onde vai parar nosso livre-arbítrio?
“Desaparece. O universo de Einstein, o da Teoria da Relatividade, não aceita a liberdade de escolha. O jeito como as nossas vidas se desdobram, do nascimento até a morte, está mesmo escrito. As escolhas que ainda vamos fazer já estão impressas no tecido da realidade. Tão impressas quanto as escolhas que a gente fez no passado” diz o filósofo especializado em física Oliver Pooley, do Centro de Filosofia da Ciência da Universidade Oxford, na Inglaterra.
Não podemos fazer nada pra mudar o destino. Ok. Mas se coisas como o rosto dos seus netos e o dia da sua morte estão “impressas” na natureza desde sempre, seria exagero pensar que, algum dia, a ciência poderia usar a matemática e a física para prever isso e tudo o mais?
“Não teria como. Mesmo que cada evento do futuro seja baseado numa fórmula matemática já determinada, e é o que eu acredito, não daria para a gente saber quais fórmulas são essas antes que os próprios eventos acontecessem”, disse à SUPER o físico Gerardus t’ Hooft, da Universidade de Utrecht e vencedor do Nobel de física de 1999. “Nenhum computador teria como decifrar a natureza, já que nada pode computar mais rápido que o Universo”, completa o holandês.
“Mesmo que cada evento do futuro seja baseado numa fórmula matemática já determinada, e é o que eu acredito, não daria para a gente saber quais fórmulas são essas antes que os próprios eventos acontecessem”
Gerardus t’ Hooft, Nobel de física
Roger Penrose, da Universidade de Oxford e considerado o maior especialista em Relatividade do planeta, concorda: “Caso a realidade seja completamente determinada, como diz a teoria, ela certamente não é computável”.
É isso aí: os horoscopistas podem tirar seus cavalos da chuva. Pelo jeito, o futuro vai continuar no breu, por mais que já esteja escrito em algum lugar.
Mundos paralelos
Mas tudo é determinado, então? Não exatamente. Existe mais um mundo mágico, onde o tempo e o espaço não fazem sentido. Um jogo de futebol por lá, aliás, seria ainda mais bizarro que o do mundo de Einstein: quando o Messi de lá parte com a bola dominada, ele se divide em 10, 20, 30 Messis. E cada uma dessas cópias chega ao gol por um caminho diferente.
Mas aí vem o pior: nenhum torcedor consegue ver esse milagre da multiplicação. Cada um enxerga um único jogador, dando uma única arrancada.
E agora, a bomba: nosso mundo também funciona desse jeito. Mas só na escala das coisas absurdamente pequenas, a das partículas subatômicas. “Sub” mesmo: se um átomo fosse do tamanho da Terra, um elétron não seria maior que uma bola de futebol.
A realidade de partículas que nem o elétron, a da física quântica, segue uma lógica que não faz sentido aqui no mundo das coisas grandes: tudo vive em um monte de lugares ao mesmo tempo. Se você fosse uma partícula subatômica, teria cópias-fantasma suas em Nova York, Paris e Plutão neste momento. Vocês estariam em lugares diferentes mais seriam a mesma pessoa, com a mesma consciência.
Isso só não acontece porque as bizarrices do universo quântico não existem no mundo das coisas maiores – o dos átomos inteiros, moléculas, planetas…
É como se a nuvem de cópias-fantasma das partículas fosse esmagada pelo “peso” das coisas grandes.
Essa nuvem, afinal, é o que há de mais delicado e indeterminado. Os próprios equipamentos usados para detectar partículas acabam com ela. E tudo o que os cientistas conseguem ver quando tentam olhar para a nuvem de cópias-fantasma é uma partícula solitária. Essa sobrevivente aparece em qualquer parte da nuvem, num lugar impossível de prever. E seus clones somem, como se tivessem sido só parte de um sonho.
Ou não. Muitos físicos acham que o nosso mundo é tão onírico quanto o subatômico. Para eles, quando algum pesquisador tenta olhar as infinitas partículas-fantasma da nuvem quântica e só consegue ver uma, não é que as outras evaporaram: é que o cientista se dividiu em cópias infinitas, espalhadas por universos paralelos.
Exatamente. É o que diz a teoria dos Mundos Múltiplos, moldada pelo físico norte-americano Hugh Everett em 1957. Ela diz que, se a partícula solitária que surgiu daquela nuvem de clones pode aparecer aqui, lá ou acolá, você também pode. Uma versão de você em um universo vai encontrar a partícula aqui. Outra, em um segundo universo, encontra ela lá. Uma terceira, acolá. Sem limite nenhum.
A idéia é que a gente vive numa infinidade de universos, cada um com a sua realidade particular. E o conjunto desses cosmos pode ser chamado de “Multiverso”: um lugar onde tudo o que pode acontecer vai acontecer. Tudo mesmo.
Se você encontrou alguém atraente numa festa, por exemplo, e não teve coragem de puxar conversa, pode ter certeza que, em algum universo paralelo, uma cópia sua chegou nela. E levou um fora. Num terceiro, a cantada deu certo. Num quarto mundo paralelo, vocês se casaram. E por aí vai: com um sem-número de universos, as possibilidades da vida também seriam infinitas.
“A Relatividade não é compatível com o livre-arbítrio.”
David Deutsch, da Universidade de Oxford
Viu o que a gente tem aí? Um futuro aberto pra qualquer coisa. Justamente o que a Teoria da Relatividade não aceita. “Nem a Relatividade nem qualquer outra teoria em que uma decisão leva a um só resultado são compatíveis com o livre-arbítrio. Já o Multiverso, com seus inúmeros mundos, não tem esse problema”, diz o físico inglês David Deutsch, da Universidade de Oxford, maior defensor da teoria hoje.
Bom, o que ninguém imagina é como a liberdade de escolha funcionaria nesse cenário sem bater de frente com Einstein. Uma hipótese, levantada por Greene, é que nós “pularíamos” entre um e outro universo paralelo cada vez que uma decisão fosse tomada. Tipo: se você resolve cantar aquela pessoa da festa, vai parar em um universo onde essa é a realidade já escrita. Se ela dá bola, vocês partem para um cosmos onde os dois ficam juntos.
Como esses pulos transcendentais aconteceriam? Ninguém imagina. “O certo é que os conceitos de identidade pessoal e de livre-arbítrio teriam de ser interpretados num contexto mais amplo, já que infinitas cópias de você e de mim estariam espalhadas por universos paralelos”, escreveu o físico em seu livro.
A prova final
A teoria está aí, bonitinha. Mas cadê a prática? Bom, o jeito mais viável de tentar provar que os universos paralelos existem mesmo, segundo os apoiadores da teoria, é verificar se outras formas de matéria se comportam de um jeito tão bizarro quanto as partículas subatômicas, pelo menos em laboratório. Ou seja: ver se coisas realmente grandes também podem ficar em vários lugares ao mesmo tempo.
Para alguns, isso seria como fazer as cópias que moram em outros cantos do Multiverso aparecerem por alguns segundos. Mais: deixaria claro que nossa identidade pessoal pode mesmo se repartir por uma infinidade de universos paralelos. Não faltam tentativas de fazer algo assim. O físico austríaco Anton Zeilinger, pioneiro nesse tipo de experiência, e que já colocou moléculas grandes, formadas por dezenas de átomos, em mais de um lugar ao mesmo tempo, estuda fazer isso com um vírus.
Cientistas renomados, como Max Tegmark, do MIT, acham que isso pode provar a viabilidade dos universos paralelos. Para eles, se os vírus tiverem alguma forma primitiva de consciência, essa “mente” deles apareceria repartida em vários mundos. Daí para repetir a experiência com um corpo maior, como o meu ou o seu, seria questão de tempo.
“Caso a natureza seja completamente determinada, como diz a Relatividade, ela certamente não é computável”.
Roger Penrose, da Universidade de Oxford
Fechou, não? Para vários físicos ouvidos pela SUPER, não mesmo. O próprio Zeilinger é contra a idéia: “Pra mim, colocar luz, átomos ou até bactérias vivas em vários lugares ao mesmo tempo não prova nada sobre universos paralelos. Essa teoria, aliás, me parece mais uma tentativa desesperada de aplicar nosso conceito de realismo ao mundo quântico. Só isso”. O austríaco está em boa companhia: “Penso que a estrutura dos mundos múltiplos só exista por um tempo infinitesimal. Muitos consideram que o colapso deles é uma ilusão ou algo assim. Eu não: do meu ponto de vista, ela é expulsa da realidade por um processo físico real”, nos disse Penrose.
Mas a teoria sempre teve partidários de peso, como o alemão Dieter Zeh (1932-2018), que formulou boa parte da física quântica moderna: “É psicologicamente difícil para a maior parte dos cientistas aceitar interpretações como a dos universos paralelos. Mas acho que ainda não existem muitas possibilidades de derrubar essa hipótese”, disse o cientista, que lecionava na Universidade de Heidelberg.
Só que até David Deutsch está entre os que acham “psicologicamente difícil” lidar com a teoria, pelo menos quanto ao poder que ela tem de abrir portas para o livre-arbítrio: “O Multiverso pode ser compatível com a liberdade de escolha, mas não consegue explicá-la. Não estamos sequer perto de entender o que é, no fim das contas, o livre-arbítrio”.
E você? De que lado fica? Toda a liberdade de escolha do mundo está aí pra você decidir.
Ou não.


Superinteressante

Darwin: o homem que matou Deus | Clic Noticias



Sempre há quem reclame, mas nada muda um fato: ele desvendou o maior mistério da biologia, e tornou dispensável a ideia de criação divina.

Por Alexandre Versignassi e Rodrigo Rezende
(Jill Greenberg/Superinteressante)
E Charles Darwin criou o homem. Ou, pelo menos, inventou o que hoje nós conhecemos como homem. Antes dele, éramos o centro do Universo, a obra sublime da criação. Agora somos apenas mais uma entre milhões e milhões de espécies, um bicho de origem nada especial. Nada mesmo: a Teoria da Evolução deixou claro que todas as formas de vida que já pisaram na Terra são filhas da mesma tataravó – uma simples molécula.
Assim, mostrando como a vida evolui, Darwin dispensou Deus do cargo de criador. E seus seguidores do século 21 querem fazer algo ainda mais chocante: mostrar que não passamos de escravos a serviço dos verdadeiros donos deste planeta. Ah, tem mais: a teoria de Darwin pode ter desvendado o segredo dos buracos negros. E mostrado não só que deve haver vida fora da Terra mas em universos paralelos também. Quer saber como? Então vamos embarcar no velho Beagle. Primeira escala: o inferno.
Veja também
O inferno de Darwin
O solo repleto de lava negra estava coberto de lagartos e tartarugas mons­truosas. Caranguejos escarlates corriam por todos os lados. O calor era tão forte que atravessava as botas e queimava os pés. Cercado por uma vegetação composta de cactos de 3 metros de altura, girassóis do tamanho de árvores e arbustos desfolhados, Darwin escrevia em seu diário: “A superfície seca e crestada, aquecida pelo sol do meio-dia, deixava o ar abafado, quente como em um forno. Tínhamos a impressão de que até os arbustos cheiravam mal”.
“Esse lugar é o inferno!”, dizia Robert FitzRoy, capitão do navio de pesquisas Beagle, que levara o jovem Charles Dar­win às Galápagos, um arquipélago no oceano Pacífico. FitzRoy queria um cavalheiro a bordo para lhe fazer companhia. E o abonado Darwin, de 22 anos, acabou escolhido, principalmente porque estava estudando para virar padre – mas também porque FitzRoy gostou do formato do nariz dele, que “sinalizava profundidade de caráter”. O capitão tinha dois objetivos para a viagem. Um a serviço do Império Britânico: mapear a costa da Patagônia. Outro, pessoal: encontrar provas científicas de que o mundo tinha sido criado de acordo com o que está na Bíblia. Mal sabia ele que o assassino de Deus estava a bordo.
A paisagem infernal das Galápagos, onde aportaram em 15 de setembro de 1835, após quase 4 anos de expedição, era um paraíso para Darwin. Ele pintou e bordou com tudo o que pôde naquele lugar perdido no tempo. Pegou carona nas tartarugas (“Era difícil manter o equilíbrio.”), tirou onda com as iguanas (“Ela ficou olhando para mim como se quisesse dizer: Por que você puxou a minha cauda?”) e encheu o bucho de iguarias exóticas (“Tatu é um prato excelente quando assado em sua carapaça.”). De quebra tirou de lá a inspiração para a ideia mais importante e assustadora da história da ciência.
O gatilho para esse pensamento veio quando ele percebeu diferenças instigantes entre os bicos de uma espécie de passarinho das Galápagos, os tentilhões. Em uma ilha eles tinham bicos grossos, bons para quebrar nozes. Em outra, longos e finos, ideais para arranjar comida em frestas. Darwin imaginou que aquelas aves deviam ter se adaptado de algum jeito. Por mágica? Não: por um processo de seleção que levou gerações. Em ambas as ilhas teriam nascido pássaros de bico fino e de bico grosso. Naquela onde havia nozes para comer, só estes últimos teriam sobrevivido. A partir desse raciocínio simples, nascia um monstro.
Veja também
De volta à Inglaterra, aos 27 anos, Dar­win estudou a fundo as 5.436 carcaças, peles e ossos que colecionara na viagem do Beagle e concluiu que TODAS as espécies do mundo tinham passado por processos de adaptação equivalentes ao dos tentilhões. Bem devagarzinho. Imagine as asas dos pássaros, por exemplo. Pela lógica de Darwin, elas não nasceram prontas. Em algum ninho dos ancestrais dos pássaros, que não voavam, surgiu um mutante, um “patinho feio”, com uma pequena membrana que lhe permitia planar de vez em quando. Essa característica deu-lhe alguma vantagem na luta pela sobrevivência. E o bicho deixou mais descendentes que seus irmãos. A prole dele, que carregava a mesma mutação, também fez mais filhos, e por aí foi.
Com o tempo, novos mutantes, novos patinhos feios, foram nascendo com asas cada vez melhores. E no fim das contas um novo tipo de animal se consolidava no planeta: os pássaros. Tudo às custas da extinção de outros bichos parecidos, só que menos adaptados à dureza da vida. “A produção de animais superiores é conseqüência da natureza, da fome e da morte”, escreveu Darwin.
Nós mesmos, imaginou o inglês, não podíamos estar de fora. A diferença é que a evolução para a forma que temos hoje foi a partir de “macacos” (na verdade, animais parecidos com macacos) que foram desenvolvendo cérebros cada vez maiores, do mesmo jeito que os pássaros fizeram com as asas. E esses “macacos” vieram de outros bichos… Hoje sabemos de quem: de peixes mutantes que nasceram com a capacidade de respirar fora da água – nossos pulmões, por exemplo, vieram direto desses animais, que viviam em pântanos lamacentos.
Macacos na teoria da evolução de Darwin
Aí não tinha mais jeito. Darwin já sabia que não éramos “a imagem e semelhança de Deus”. Agora responda: o que você faria ao perceber que na sua cabeça existe uma ideia que pode abalar as crenças mais profundas de quase toda a humanidade? Darwin sentiu o peso, e ficou aterrorizado. Demorou mais de 30 anos para publicar a ideia em seu livro A Origem das Espécies, de 1859. E ainda assim o livro só saiu quando ele leu um artigo de Alfred Russel Wallace, um biólogo inglês. O texto continha uma teoria bem similar à da seleção natural, porém menos abrangente. Com medo de ser passado para trás, Darwin autorizou seu amigo Thomas Hux­ley a expor a Teoria da Evolução ao mundo científico, pois ele mesmo não teve coragem. “Foi como confessar um assassinato”, escreveu.
Por isso mesmo a teoria demorou para virar unanimidade entre os acadêmicos. Ela só foi aceita para valer quando outros cientistas, já no século 20, a refinaram com base na genética – a forma como os pais transmitem suas características aos filhos. Esse renascimento deu um gás novo à Teoria da Evolução. E na década de 1930 começava uma nova revolução: o neodarwinismo. Com ele, uma ideia aterradora começou a sair do forno: a de que você não passa de um robô. Era a Teoria do Gene Egoísta, que ganhou corpo nos anos 70. Para entendermos melhor essa história, vamos fazer outra viagem no tempo. Desta vez para uma época bem anterior à do Beagle. Mas com um destino igualmente infernal.
Origem das espécies 2.0
Planeta Terra, 4 bilhões de anos atrás. Um mundo adolescente, infestado por vulcões, meteoritos e tempestades violentas. No mar desse inferno, moléculas de carbono encontraram um porto seguro. E começaram a se juntar, formando cadeias cada vez mais longas e complexas. Uma hora, como quem não quer nada, apareceu um estranho nesse ninho. Um acidente da natureza. Era uma molécula capaz de se replicar, de sugar matéria orgânica do ambiente e usar como matéria-prima para produzir cópias dela mesma. Motivo? Nenhum: ela fazia réplicas por fazer e pronto. Vai entender…
Essa aparição foi algo tão improvável quanto se uma revista (que também é feita de cadeias de carbono) comesse seus dedos ao folheá-la e, a partir dos átomos da sua carne, pele e ossos, construísse uma cópia dela mesma. Improvável, mas foi exatamente o que aconteceu naquele dia. E não havia nada ali para conter o apetite da monstruosa molécula.
Ainda mais porque arranjar matéria-prima, ou seja, “comida”, nesse oceano primitivo era fácil: bastava “pescar” nutrientes na água. Assim ela cresceu e se multiplicou. Mas tinha um problema: nem sempre as réplicas saíam perfeitas. Às vezes acontecia um erro de cópia aqui, outro ali. Surgiam aberrações. “Um livro e tanto escreveria o capelão do Diabo sobre os trabalhos desastrados, esbanjadores, ineficientes e terrivelmente cruéis da natureza!”, escreveria Darwin sobre esse processo bilhões de anos depois.
Esses erros aconteciam bem de vez em quando: um a cada milhão de réplicas. Mas tempo é o que não falta nesse mundo. Então eles foram se acumulando mais e mais. Só que alguns não davam em aberrações. Muito pelo contrário. Algumas réplicas nasciam com uma mutação que as fazia se multiplicar mais em menos tempo. E não demorou para essas mutantes mais férteis dominarem o mar. Só isso já é um tipo de seleção natural. Mas a regra de Darwin só deu as caras para valer quando aconteceu o inevitável: o mundo ficou pequeno para tantos replicadores. Com a superpopulação, os ingredientes de que eles precisavam para fazer suas cópias rarearam. Era a primeira crise de fome no planeta.
A saída? Ir para a briga. Mas estamos falando de moléculas, que não têm lá muito poder de decisão. Foi aí que provavelmente surgiu uma mutação inédita, que permitia a algumas moléculas comer outros replicadores. Assim elas conseguiam eficiência total: arranjavam almoço e eliminavam rivais ao mesmo tempo. Mas o domínio não duraria para sempre. Com o tempo surgiram mutantes com capa protetora natural. Com essa armadura, dava para comer os rivais sem o risco de ser comido. Nasciam as primeiras células do mundo. “Os replicadores deixavam de meramente existir e começavam a fazer contêineres para eles, veículos para que pudessem continuar vivos. Os que sobreviveram foram os que construíram ‘máquinas de sobrevivência’ para si”, escreveu o mais notório dos neodarwinistas, o zoólogo Richard Dawkins, da Universidade de Oxford, na Inglaterra.
Não demorou para virem células mutantes ainda mais terríveis contra as rivais. Elas tinham o poder de juntar forças com outras células e atacar unidas. E de fazer cópias de si mesmas numa tacada só, como se todas fossem uma única molécula. Surgiam os primeiros seres multicelulares. E eles ficaram cada vez mais complexos: suas células passaram a assumir funções distintas para operar sua máquina de sobrevivência. Faziam como soldados num tanque de guerra: umas ficavam a cargo da locomoção, na forma de nadadeiras; outras, dos “satélites” para encontrar comida (visão, olfato).
E o progresso nunca parou. Tanto que hoje boa parte dos replicadores vive em “robôs” imensos, feitos de milhares de trilhões de células. Agora os chamamos de genes, e eles estão dentro de nós. Somos sua máquina de sobrevivência.
Veja também
O sentido da vida
Genes mutantes e as pressões da seleção natural fizeram essa obra esplêndida que você vê no espelho todas as manhãs. Uma caminhada e tanto. Mas uma coisa não mudou desde os tempos da primeira molécula replicadora. Aquele objetivo irracional continua intacto: tudo o que os genes querem é fazer cópias de si mesmos. Foi para isso que eles criaram nosso corpo e nossa mente. E agora nos comandam lá de dentro, por controle remoto, para que trabalhemos em nome de sua preservação. A razão da existência? Lutar para que os genes façam cópias deles mesmos do melhor jeito possível.
E, para os neodarwinistas, esse egoísmo dos genes é a chave para descobrir como a nossa mente funciona. O próprio Darwin tinha escrito, no final de A Origem das Espécies: “Agora a psicologia se assentará sobre um novo alicerce”. Demorou, mas aconteceu. Uma nova ciência da mente ganhou terreno no final do século 20. Foi a psicologia evolucionista, que usa Darwin e a mecânica dos genes para entender o que se passa aí dentro da sua cabeça.
Premissa número 1 dessa ciência: a mente já nasce quase pronta. Ela não é uma folha em branco, em que qualquer coisa pode ser “escrita”, como muitos filósofos e cientistas sociais defendem. Do ponto de vista da psicologia evolucionista, não faz sentido dizer que a cultura molda o nosso comportamento. Ela afirma que sua mente foi forjada ao longo de toda a evolução. E que você vem ao mundo com todos os “softwares” instalados no “hardware” da sua cabeça. Seus desejos, sua personalidade e tudo o mais dependem desses programas mentais. Nossa margem de manobra é pequena.
E tem outra: a mente humana ganhou os soft­wares que tem hoje nos últimos 200 mil anos, quando nossa espécie, o Homo sapiens, veio ao mundo. Passamos 97% desse tempo em bandos nômades, que viviam da caça e da coleta. Nossa mente, então, não passa de uma ferramenta da Idade da Pedra tentando se virar num mundo que não existe mais. Do ponto de vista dos nossos genes, ainda estamos no Paleolítico, uma época sem faculdade, carreira, dinheiro ou anticoncepcionais. Uma época em que só duas coisas realmente contavam: sexo e violência.
(Jill Greenberg/Superinteressante)
A guerra do sexo
Se ainda sobrou alguma coisa que você queria saber sobre sexo, mas não tinha coragem de perguntar, talvez a resposta dos evolucionistas sirva: ele é a forma que os genes arrumaram para melhorar as defesas da sua máquina de sobrevivência. Por exemplo: se você tem um sistema imunológico que não sabe se defender de algum vírus, e tudo o que você sabe fazer para se reproduzir são cópias de si mesmo, como aquelas primeiras células, seus rebentos vão ter esse problema. E o clã inteiro vai morrer no caso de um ataque.
Agora, se você combina seus genes com o de um ser imune ao tal vírus, a história é outra: teoricamente, só uma parte do clã morreria. E o resto continuaria passando seus genes adiante como se nada tivesse acontecido.
Ao criar esse tipo inovador de reprodução, a seleção natural tratou de dividir o trabalho entre dois tipos de fun­cionários especializados. Um teria a função de tentar pôr seus genes em qualquer máquina de sobrevivência que cruzasse seu caminho. O outro selecionaria entre esses primeiros quais têm os melhores genes para compartilhar e cuidaria da cria que os dois tivessem juntos. Em outras palavras, o mundo se dividia entre machos e fêmeas.
Enfim, ao ganhar o poder de decidir quais machos terão filhos e quais ficarão na prateleira, as fêmeas assumiram o controle da evolução na maioria das espécies. E, para a psicologia evolutiva, é isso que determina aquilo que mais importa na vida: a propagação dos nossos genes, coisa também conhecida como vida afetiva e sexual.
O sexo, hoje, tem pouca relação com o ato de fazer filhos. Você sabe. Nenhum adolescente pensa em engravidar 10 meninas quando vai viajar para o Carnaval. Mas os genes dele não fazem ideia de que existem camisinhas e tudo o mais, então deixam o rapaz com vontade de transar com 10 garotas e pronto. Se tudo der certo, esses genes poderão instalar-se no útero de um monte de meninas e construir um monte de bebês (um monte de máquinas de sobrevivência).
Do ponto de vista das fêmeas a história é outra: transar com 10 sujeitos num feriado não vai “render” 10 filhos para os genes dela se instalarem. Vai dar é uma baita dor de cabeça. Os contraceptivos poderiam deixá-las livres para fazer sexo só pelo prazer com um monte de seres do sexo oposto, como qualquer homem faz (ou tenta fazer). Mas não. O cérebro delas evoluiu para selecionar os melhores parceiros, ter poucos (e bons) filhos, não para tentar a sorte com qualquer um. Sem falar que, do tempo dos nossos ancestrais caçadores-coletores até o século 20, sexo casual para elas era correr o risco de acabar com um bebê indesejado.
Psicólogos da Universidade Stanford, nos EUA, checaram isso com uma experiência simples. Contrataram homens e mulheres atraentes para abordar estudantes e dizer: “Você gostaria de ir para a cama comigo hoje?” Nenhuma mulher aceitou. Já as garotas tiveram resultados melhores: 75% dos homens toparam no ato. Dos 25% restantes, a maioria pediu desculpas, explicando que tinha marcado de sair com a namorada. Pois é: do ponto de vista da seleção natural, uma fêmea disponível é um bem valioso demais para ser desperdiçado.
Nenhum homem se surpreende com isso, mas, para as mulheres, a verdade da psicologia evolucionista pode soar assustadora: “O desejo de variedade sexual nos homens é insaciável. Quanto maior for o número de mulheres com quem um homem tiver relações, mais filhos ele terá [pelo menos é o que “pensam” os genes]. Então demais nunca é o bastante”, escreveu outro guru do neodarwinismo, o psicólogo Steven Pinker, da Universidade Harvard, nos EUA.
Esse apetite todo também ajuda a explicar as raízes de outro comportamento ancestral: a violência. Os despojos de guerra mais comuns nos conflitos tribais sempre foram as mulheres. Não é à toa que uma das lendas sobre a fundação de Roma, que aconteceu no século 8 a.C., celebra o dia em que os primeiros romanos atacaram uma tribo vizinha, a dos sabinos, e raptaram as mulheres deles para começar sua civilização.
E esse é o ponto: às vezes a violência é, sim, o melhor jeito de conseguir alguma coisa. Então não há mistério para a psicologia evolucionista. Como a violência funcionou ao longo da história, ela está impregnada nos nossos genes. “Os bebês só não matam uns aos outros porque não lhes damos acesso a facas e revólveres”, disse o pediatra e psicólogo Richard Tremblay, da Universidade de Montreal. A grande questão, ele completa, não é como as crianças aprendem a agredir, mas como elas aprendem a não agredir.
A resposta é relativamente óbvia: “A coisa mais complicada na vida de um primata [e humanos são primatas] é a capacidade de se virar em sociedades complexas. Se dar bem socialmente não é dar bifa em todo mundo, claro”, diz o psicólogo Eduardo Ottoni, da USP. Então nada melhor que um pouco de altruísmo para ficar bonito na foto. Os morcegos que o digam: entre as espécies que se alimentam de sangue, a vida não é fácil. Nem sempre dá para voltar pra caverna com o almoço na barriga. Mas os que conseguiram sangue durante o dia dão uma força aos malsucedidos, oferecendo a eles o sangue que sobrou na boca. Mas não tem conversa: quem não retribuir a oferta quando a situação for inversa fica com a reputação manchada e é banido do almoço grátis.
Mas em alguns casos somos altruístas sem querer nada em troca, nem inconscientemente. Isso acontece quando se trata das nossas famílias. E é aí que, para os neodarwinistas, fica mais clara a forma como os genes nos dominam.
Sangue do meu sangue
Você é uma máquina de sobrevivência dos seus genes, que o usam para se reproduzir. Ok. Mas o que aconteceria se esses genes tivessem construído um cérebro capaz de detectar cópias deles em outro corpo? O seguinte: eles também lutariam pela sobrevivência desse corpo. Fariam você se sentir aliviado com bem-estar dele.
O fato é que os genes construíram esse sistema de detecção. Todos os cérebros têm isso em algum grau. E o altruísmo puro é exatamente o que acontece quando dois animais são parentes próximos. Existe uma chance em duas de que qualquer um dos seus genes esteja no seu irmão ou no seu filho. E 1 em 8 de que esteja em um primo. Sendo assim, o que o neodarwinismo diz é: você não “ama” seus filhos e irmãos. São seus genes que veem neles maneiras de se perpetuar. E é por isso que você os ajuda. O geneticista John Haldane (1892-1964), um dos pioneiros do neodarwinismo, quis deixar isso claro quando lhe perguntaram se ele daria a vida por um irmão. A resposta: “Não. Mas daria por 2 irmãos ou 8 primos”.
O mesmo vale para quando nos apaixonamos. Se você ama alguém, quer ter filhos com essa pessoa, quer colocar seus replicadores ali e se esfolar para cuidar dos rebentos. Aí, para o futuro dos genes, sua vida só faz sentido se aquela pessoa existir. E o sentimento é tão poderoso que parece eterno enquanto dura.
Outra coisa que determina a hierarquia entre parentes é a expectativa de que eles se reproduzam. Daí os pais se sacrificarem mais pelos filhos do que os filhos pelos pais. Responda rápido: se você tivesse que decidir entre a morte de 20 estranhos e a vida do seu filho, ficaria com qual opção? Ou melhor: existe algum número de pessoas que valha a vida de um filho? Para a psicologia evolucionista, não. Para o Zé Mané do boteco e a dona Cleide da quitanda também não. O egoísmo dos genes aí dentro é maior do que tudo o que tem do lado de fora.
Veja também
(Pixelparticle/Getty Images)
A evolução do Universo
Falando em lado de fora, e o lado de fora? A evolução seria um fenômeno circunscrito à vida na Terra ou algo universal, como as leis da física? O físico Lee Smolin, do Perimeter Institute, no Canadá, fica com a opção número 2.
Smolin mandou as regras de Darwin para o espaço. Literalmente: criou uma teo­ria que aplica a seleção natural ao Universo inteiro. E foi além. Para ele (e outros físicos), nosso Universo é só mais um entre bilhões e bilhões. Todos juntos num Cosmos imensurável que podemos chamar de Multiverso. Nesse cenário, os universos são os indivíduos, os replicadores. Cada um lutando para fazer mais e mais cópias de si mesmo.
Bom, este Universo aqui onde você está começou quando toda matéria, tempo e espaço que conhecemos estavam espremidos em algo infinitamente pequeno. Esse pontinho explodiu no “dia” do big-bang, há 13,7 bilhões de anos, e agora estamos aqui. Mas tem uma coisa: existem alguns lugares no Universo em que tudo também está espremido desse jeito agora mesmo. São os buracos negros, que sugam tudo o que está à volta deles, inclusive tempo e espaço. Por isso, Smolin imagina que dentro de cada buraco negro há um big-bang acontecendo. E os buracos seriam como “gametas” cósmicos: dariam à luz novos universos, parecidos com o “pai”. Smolin, então, considera que os universos mais bem-sucedidas no Multiverso são justamente os que produzem mais buracos negros – a “prole” deles vai ser seguramente maior.
Lembre-se que buracos negros são estrelas mortas. E daí? Daí que, quanto maior for o número de estrelas, maior vai ser o de “gametas”. Mais: as nuvens de matéria onde as estrelas nascem precisam ser bem frias (por motivos que só teríamos como explicar com outro texto, bem chato). Bom, e sabe que tipo de coisa é o que há de melhor para esfriar essas nuvens cósmicas? Moléculas de carbono. Elas mesmas, as que deram o pontapé inicial na vida por aqui. Quanto mais delas houver por aí, mais “filhos” um Universo vai gerar. E nós, os descendentes dessas moléculas, seríamos um mero subproduto da verdadeira seleção natural, a do Cosmos. Parece desolador, mas, se for isso mesmo, podemos nos orgulhar de saber que as leis de Darwin governam tudo isso.
Ou até mais do que isso. Baruch Spinoza, um filósofo holandês do século 17, defendia que Deus e Universo são apenas dois nomes para uma coisa só; que o Criador não é exatamente um criador, mas a grande regra que move o Cosmos. Se você gosta desse ponto de vista (Albert Einstein gostava) pode dizer tranquilamente: Darwin não matou Deus. Só descobriu onde ele está.

Superinteressante

OS GRANDES ECONOMISTAS! | Clic Noticias



(BBC, 06) 1. No livro The Great Economists (Os grandes economistas, em tradução livre para português) a economista e jornalista britânica-americana Linda Yueh explica os pensamentos-chave que distinguiram esses e outros nove economistas, e o que eles podem nos ensinar sobre o mundo atual.
2. Em entrevista para a revista BBC History, Yueh destacou que, ainda que os 12 especialistas tenham pensamentos muito distintos – e em alguns casos opostos – todos têm algo em comum. "Todos eles observaram os desafios econômicos mais importantes de sua época, os examinaram, analisaram e encontraram formas de nos ajudar a entender melhor o que estava ocorrendo. E o mais importante ainda, nos explicaram o que podia ser feito a esse respeito", afirma a autora.
3. Assim, por exemplo, Adam Smith se preocupou como a Revolução Industrial afetava a motivação das pessoas e seu sustento econômico. John Maynard Keynes focou a busca pelo fim da Grande Depressão.
4. A obra também cita contribuições de David Ricardo, Alfred Marshall, Irving Fisher, Joseph Schumpeter, Friedrich Hayek, Joan Robinson, Milton Friedman, Douglass North e Robert Solow.
5. Todos esses economistas também abordaram certos temas em comum, principalmente o crescimento econômico. "Não apenas como crescer economicamente mas também a qualidade do crescimento econômico, a fim de que melhore a vida de todos", diz a autora da obra.
6. O livro de Yueh surpreende ao revelar como alguns problemas econômicos que parecem modernos são, na realidade, históricos. Por exemplo, a desigualdade. Em finais do século 19, esse era um tema que despertava o britânico Alfred Marshall, professor da Universidade de Cambridge, que se dedicou a refletir sobre como eliminar a disparidade salarial sem afetar a prosperidade econômica.
7. Em sua grande obra, Princípios de Economia, de 1890, Marshall enfatizou que as diferenças de renda são um fator-chave que condicionam o desenvolvimento econômico. E para entender como melhorar a distribuição da riqueza, tentou transformar a economia em uma ciência prática, buscando formas de influir nos movimentos do mercado para que melhorasse o rendimento do capital e o bem-estar social geral concomitantemente.
8. O problema dos baixos salários também vem sendo abordado há quase um século. Uma das primeiras pessoas que analisou o fenômeno foi a economista britânica Joan Robinson, a única mulher que faz parte da lista de Linda Yueh. "Mulheres são apenas um quinto dos economistas do mundo ", diz Yueh. Analisando o que ocorreu depois da Grande Depressão, Robinson criou o modelo de "competência imperfeita", que ajuda a explicar por que o mercado de trabalho funciona de forma defeituosa, gerando baixos salários e desemprego.
9. Afastando-se das teorias de economia clássica, que sustentam que os mercados funcionam perfeitamente, baseados na oferta e demanda, Robinson mostrou que quando há monopólios, as empresas podem explorar seus trabalhadores, reduzindo seus salários. Como solução, propôs introduzir concorrência, para que qualquer empresa que explore um trabalhador corra o risco de perdê-lo para outra empresa.
10. O primeiro economista citado no livro é Adam Smith, considerado o "pai do capitalismo". "O que fez Adam Smith com sua obra seminal A Riqueza das Nações (1776) foi melhorar o entendimento de como funciona uma economia industrial", algo que estava recém surgindo à época. O escocês foi o primeiro a explicar conceitos econômicos como preço, produção, distribuição, finanças públicas, comércio internacional e crescimento econômico. "Por isso, se converteu na base da economia desde então", afirma a pesquisadora Yueh. Smith não apenas explicou como funcionava a nova economia industrial mas também como ela afetava os trabalhadores. Assim como outros economistas incluídos no seu livro, seus pensamentos seguem sendo relevantes ainda hoje. "Suas teorias continuam servindo para entender como funciona o mercado e o papel do Estado. E nos ajuda a entender quando devemos estar preocupados e como devemos entender a balança comercial e os déficits comerciais, coisas que ainda são debatidas hoje", defende a autora de The Great Economists.
11. O livro também aborda outro economista muito famoso: o alemão Karl Marx, que completou 200 anos de nascimento em 2018. A BBC History questionou Yueh sobre o que pensaria o ideólogo do comunismo sobre a China, o país comunista que mais teve êxito na história. "Não tenha certeza de que Marx reconheceria que a economia chinesa de hoje adere a seus princípios", responde. O Partido Comunista chinês seguiu o marxismo por um tempo, antes da ruptura com a União Soviética, depois da Segunda Guerra Mundial, mas tudo mudou com "a introdução das reformas de mercado em 1978", afirma Yueh.
12. A autora avalia que Marx poderia ter considerado "curioso" o que ocorre quando se introduz o capitalismo em um país com um sistema político comunista, "mas, segundo seus conceitos, não podia coexistir o capitalismo com o comunismo".
13. Segundo a autora de The Great Economists, o último economista em sua lista, o americano Robert Solow, poderia nos ajudar a resolver um dos principais problemas econômicos atuais, que afeta nosso futuro próximo: a estagnação econômica.
14. O crescimento econômico diminuiu desde a crise financeira de 2008 e, nesse contexto, explicou, muitos temem converter-se em um Japão – um país rico que pode nunca se recuperar por completa de sua própria crise financeira, nos anos 1990.
15. O "modelo de crescimento" de Solow, que analisa a relação entre a produtividade, a capacitação do trabalhador e o investimento, "poderia nos dar as respostas para sair do problema", defende Yueh.

Ex-Blog do Cesar Maia

Ela sempre se chamou "real", desde os tempos colonias. O cruzeiro, que vigorou com idas e vindas entre 1942 e 1994 foi só um soluço histórico – e hiperinflacionário. Entenda.
Puzzle
O falsário
Você tem uma lojinha de antiguidades, e vende tudo ali com uma margem de 30% de lucro. Um sujeito entra na sua loja e compra uma caneta tinteiro por R$ 65. Ele paga com uma nota de R$ 100. Mais tarde, putz, você descobre que a nota é falsa. Quanto dinheiro você realmente perdeu?